OpenLDAP Development

Back-config —Configuration Backend

Howard Chu hyc@symas.com
ODD/Wien July 18, 2003



Objectives

* Support runtime reconfiguration without
requiring server restarts

— Allow ACL reconfiguration

— Allow schema modification

* Support remote administration of slapd

— Enable performing all configuration via LDAP



Rationale

* The objectives are not mutually assured:

— Could e.g. use SIGHUP to force reread of
config file, thus allowing runtime changes, but
not allowing remote administration

— Could provide LDAP interface to rewrite
config file, without any mechanism for slapd to
reload the changed configuration

 Fulfilling both objectives 1s desirable
 Either one may require significant effort



Runtime Reconfiguration

* Preliminary support embodied in Gentle
HUP processing:

— Aimed at allowing a new slapd instance to be
started with minimal 1impact on existing
Sess10nS

C

The new slapd 1nstance can use the same BDB

atabase as the old, or can use a separate

C

atabase



Gentle HUP, cont’d

* Implementation 1s awkward at best

— Requires descriptor-passing to avoid session
interruption

— Database sharing requires back-bdb and shared
mutex support

* Some benefits from starting a new instance

— New executables can be installed with minimal
service impact

— Can temporarily recover from memory leaks



Runtime Constraints

» Config processing is currently single-
threaded

— Config file 1s processed before threads are
spawned

— Config data 1s not mutex protected

— Adding mutexes may harm overall performance



Ensuring Config Consistency

« Use a single rdwr lock for access to global
variables

— Highly invasive code change, requires locking in many
places

— Doesn’t ensure consistency within the life of an
operation

 Disable the thread pool
— Wait for all executing operations to complete

— Prevent new operations from being dispatched until
config changes are processed



Remote Administration

* Varying degrees of “LDAP enablement”
possible

— Expose slapd.conf as generic text attributes,
with no semantic awareness

— Map coarse set of objects onto slapd.contf,
minimal semantic awareness

— Replace slapd.conf with LDIF/attribute-based
format

» Each approach has tradeoffs



Slapd.conf as generic text

* Implementation 1s fairly trivial

— Models already exist (e.g. back-passwd) for using flat
text files as backends.

— Has no impact on current config processing code

* Major disadvantages
— Very difficult to support runtime reconfig
— Ignores “include” directives

— Makes it too easy to shoot yourself in the foot



Slapd.conf with partial semantics

« Targets specific functionality with explicit
attributes, leaves remainder as generic text
— Handle include, access, and schema keywords

— Optionally handle database keywords as separate
objects

* Drawbacks
— Loses config file comments

— Still requires some changes to existing config parsing
code



Slapd.conf as LDIF

* Provides the most client-friendly support

— Defines schema for all existing config functionality

* Requires extensive changes 1n slapd

— Config parsing must be completely rewritten for slapd
and all backends
* Needs to be table-driven
* Needs OID allocation methodology, etc.

— Requires support for per-backend schema to avoid
config syntax clashes



Which 1s best?

» Using generic text precludes changes taking
effect immediately

* Supporting a small set of keywords
provides some essential features now,
others later/never

* Migrating to LDIF requires major
overhauling of slapd



Conclusions

The pure generic text solution 1s not useful
enough

The full LDIF solution 1s taking too much
effort to complete

Will probably fall back to partial support

Open to suggestions and assistance!



