OpenLDAP Proxy Cache Development

Apurva Kumar
IBM India Research Lab

| July 18, 2003 |
Agenda

- LDAP query caching.
- LDAP proxy cache.
- Proxy cache architecture.
- Implementation issues.
- LDAPsync and proxy caching.
- Future development plans.
LDAP query caching

- Problems with large enterprise directories
 - Scalability
 - Large delays for remote sites.
- Alternatives
 - Partial replication.
 - Partitioning.
- Advantages of query caching
 - Caches queries rather than naming contexts.
 - Answers repeat and contained queries.
 - Utilizes locality of reference.
LDAP query cache operation

- Caches entries and metadata corresponding to search requests.

- *Query containment:* Determines if an incoming query is semantically contained in cached queries.

- Answers contained queries locally.

- Contacts backend for queries not contained.
Template based query containment

- General query containment: A query filter F1 is contained in another filter F2 iff (F1 & !F2) is inconsistent.

- Template: Prototype for generating query filters, e.g. (sn=), (&(sn=)(givenName=)).

- Typical applications use only a few templates.

- Template based containment: Cache queries belonging to specified templates.

- Simplifies containment problem
 - Use only those templates which can possibly answer the query.
 - Same template: Comparisons of corresponding simple filters.
 - Cross template: Predetermined conditions.
LDAP proxy cache

- An LDAP proxy extended for query caching.

- Why implement query caching inside directory servers?
 - Query containment requires syntaxes and matching rules.
 - Applications need not change.
 - Common functionality (search, add etc.) with directory servers.
 - Can be integrated with synchronization mechanisms like LDAPsync.
Proxy cache architecture

LDAP client

QC: Query Containment engine
CM: cache manager

Front end

Meta backend+QC+CM
- search
- others

Merge/add/remove

LDAP API | Cache backend

Add
Modify
Delete

Database backend

Proxy cache

Backend server

Cache backend

OpenLDAP proxy cache development
OpenLDAP proxy cache: Algorithms

- Cacheability: what to cache?
 - Incoming queries
 - Queries belonging to specified templates.
 - Queries satisfying a size limit.

- Cache replacement: Removes LRU query.

- Prefetching: Currently not implemented.

- Consistency: TTL based weak consistency.
Implementation issues

- Ideally any backend should be able to act as a cache store.

- Issues:
 - Sparse subtree problem.
 - Adding entries without parent.
 - Removing entries without children.
 - Searching without search base in the cache.

 Disabling schema check.
 Disabling access control for cache operations.

- Current solution is to disable checks when a caching operation is being performed.

- Alternatives: glue entries, rootDN, backend flags.
LDAPsync and proxy cache

- LDAPsync can be used to support
 - Polling based updates.
 - Strong consistency.

- Replication + caching
 - Replicated filters capture static referential locality.
 - Cached filters capture dynamic referential locality.
 - High hit ratio.

- Interaction between proxy cache and LDAPsync
 - LDAPsync provides consistency for cached filters.
 - Proxy cache allows answering of queries from replicated filters.
Design changes

LDAP client

Frontend+QC+CM

Cache backend

Proxy/meta backend

Database backend

Proxy cache

backend server

OpenLDAP proxy cache development
Future Work

- Combining LDAPsync and proxy cache.

- Using cache specific schema for representing queries and implementing containment.
 (draft-apurva-ldap-query-containment-01.txt)

- Implementation of prefetching algorithms.