
OpenLDAP Developer’s Day, Aug 2004

© 2004 IBM Corporation

Adaptive Cache Tuning
in OpenLDAP

Jong-Hyuk Choi (jongchoi@us.ibm.com)
IBM Thomas J. Watson Research Center
Enterprise Linux Group

OpenLDAP Developer’s Day, 2004

Contents

 Application-Level Memory Management

 Entry Cache vs. DB Mpool

 Adaptive Cache Tuning
– Memory Pressure Resilient Entry Cache

– DB Mpool Resizing Mechanism

 Summary

OpenLDAP Developer’s Day, 2004

Memory Management
 Virtual Memory Abstraction

– Provides an abstract view of memory

– Illusion of large address space regardless of physical memory size

– Does not abstract performance though !

 64-bit Platforms
– Increasing demand of application memory

– Physical memory size does not scale accordingly

– Increasing Vitual / Physical ratio

 Server Consolidation
– Over-commit of system memory resource

– Another level of virtual memory abstraction between OS and VM

– IBM zSeries zVM, IBM pSeries DLPAR / pHypervisor, VMWare …

OpenLDAP Developer’s Day, 2004

Application-Level Memory Management

 Collaborative Memory Management
– Collaboration between system layers are essential

• Applications – Operating System
– When it is more efficient to construct an object than to rely on lower

layer paging mechanism, discard in-memory object
• Operating systems – Virtual Machine

– Ballooning driver : relying on OS paging mechanism to collect
memory and redistribute to other OS images

– DLPAR : dynamic resizing of memory resources between LPARs
• A rule of thumb: it’s better for a higher layer to collaborate with

the memory management at a lower layer, because the higher
the layer is, the more domain-specific information is available

OpenLDAP Developer’s Day, 2004

Caches in OpenLDAP

nrdn
parent
Status,ID
LRU
Entry
kids-avl

nrdn
parent
Status,ID
LRU
Entry
kids-avl

nrdn
parent
Status,ID
LRU
Entry
kids-avl

nrdn
parent
Status,ID
LRU
Entry
kids-avl

ID
name
nname
e_attrs
oc_flags
bv

 Entry Cache

dn ndn cn sn ou loc …

 DBT

ID1, ID2, ID3, ID4 ……
 IDL

Cache

 EntryInfo
Cache

OpenLDAP Developer’s Day, 2004

BerkeleyDB Caching
 Berkeley DB mpool subsystem

– General purpose shared memory buffer pool

– B+Tree, Hash, Recno

– File mapped / shared memory backed

– Size is determined upon DB_ENV creation

db file
region

file
db file

db file

mpool

mpool region
file

OpenLDAP Developer’s Day, 2004

Entry Cache vs. BerkeleyDB Mpool

 Entry cache
– Provides low latency access method for small working set sizes
– Low hit latency
– Poor performance under memory pressure – swapping havoc

• Entry load from DB : write access -> dirty pages -> needs write back
 DB mpool

– Provides caching for large working sets
– Higher hit latency than the entry cache (10 ~ 1000 times)

• Access method overhead
• Data copying from DB mpool to application buffer

– Good performance under memory pressure
• Entry load from region: read access -> clean pages -> no write back

OpenLDAP Developer’s Day, 2004

Entry Cache vs. BerkeleyDB Mpool: Swapping
 Sequential access, cold run

 Working set > available physical memory size

DB Mpool Entry Cache

Paging

Read-ahead

 Swapping storm can occur even with a balanced initial configuration
– Hikes in memory demand due to other applications and/or other OSes

OpenLDAP Developer’s Day, 2004

Entry Cache vs. BerkeleyDB Mpool: Latency
 Non-sequential access, cold run + warm run

 Working set < available physical memory size

DB Mpool Entry Cache

Cache Hit

Cache Hit

 Access method overhead / data copying in DB Mpool
– Latency increase - Degrades system perf (throughput, cache pollution)

OpenLDAP Developer’s Day, 2004

Entry Cache vs. Berkeley DB Mpool

 How can we utilize both the advantages ?
– Entry cache redesign to make it resilient to memory pressure

– DB cache resizing mechanism

OpenLDAP Developer’s Day, 2004

Entry Cache Redesign: Detecting Memory Pressure

 Limit entry cache size upon detecting
memory pressure

– OS memory info does not tell the whole
story in virtualized environment

– Monitoring average access latency
– Sudden incline of average latency curve

 Huge decrease in swapping storm
 Cannot recover completely from swapping

storm, because
1. OpenLDAP caches are malloc’d
2. Different OpenLDAP cache objects are

collocated and interfere (EntryInfo / Entry)
– EntryInfo cache has poor locality (AVL tree),

hence it makes OS paging algorithm
ineffective

Swapping
Detected

OpenLDAP Developer’s Day, 2004

Entry Cache Redesign: Dedicated Object Heaps
 Dedicated object heap

– Breaks interference bw objects
 Mmap-based entry cache

– Allocation / replacement unit: cluster of pages
– Mapping from /dev/zero

 Entry cache
– Use mmap-based entry cache
– Entry struct size depends on schema

 DBT struct
– Use mmap-based DBT (DBT_USERMEM)
– Size depends on stored data (small variance)

 EntryInfo
– Small size, always in addr space, use malloc

 Much enhanced swapping behavior
 Fragmentation problem

– Provides slabs for Entry and DBT struct
– Simple buddy allocator
– Find cluster size to minimize fragmentation

according to the average size of DBT struct
– Invalidate highly underutilized clusters

Swapping
Detected

OpenLDAP Developer’s Day, 2004

Entry Cache Redesign: Avoid Swapping

Swapping
Detected

 Dedicated object heap
+ memory use hint to OS
– madvise(MADV_DONTNEED)
– Zaps the pages in the mapping wo writeback
– Mapping is still active and COW zero pages will

be provided when accessed again

 When memory pressure is detected
– Call madvise to release memory wo writeback

 How to detect an app object is gone ?
– Testing non-zero byte in object (Entry, DBT)
– Compare epoch numbers in EntryInfo and the

page cluster

 Entry cache resizing becomes very efficient

OpenLDAP Developer’s Day, 2004

Resizing BerkeleyDB Mpool
 BerkeleyDB Mpool can be resized when it’s dedicated to a single slapd

– Completing outstanding DB operations
– Removing the DB environment by DB_ENV->remove()
– Recreating the DB environment with a new cache size

 The environment resizing overhead turned out to be very small with an
appropriate checkpoint setting
– Consider resizing when system is under low load condition

 During DB environment restart
– Queues incoming requests temporarily
– Requests can be serviced out of OpenLDAP caches
– Return BUSY

 DB Mpool resizing policy
– Increase upon large update latency, Decrease upon small update latency
– When DB Mpool is resized, resize the Entry cache in the opposite direction

OpenLDAP Developer’s Day, 2004

Summary and Further Works

 Adaptive cache tuning
– Taking advantage of both the entry cache and DB mpool

 Memory pressure resilient entry cache
– Use of mmap based memory allocator and memory access hint
– Entry cache resizing becomes very efficient

 Resizing DB mpool
– DB mpool can be resized by monitoring the latency of updates

 Further works
– A patch for community review
– Monitoring of cache hit ratio

