
The OpenLDAP Proxy Cache

Apurva Kumar
IBM, India Research Lab

kapurva@in.ibm.com

Abstract

This paper describes the design, implementation
and usage of a query caching extension of the
OpenLDAP directory server’s proxy
capabilities. The extension allow caching of
LDAP search requests (queries). The LDAP
proxy cache stores data and semantic
information corresponding to recently answered
queries and determines if an incoming query is
semantically contained in any of the cached
queries. It uses the meta backend to connect to
one or more backend directory servers.

1. Introduction
There has been a growth of websites providing dynamic
content on the web. Typically dynamic content is
generated in response to a user request (query) evaluated
against a database. Techniques used for traditional
content caching are thus not useful for caching dynamic
content. Directories are specialized databases which are
capable of storing heterogeneous real world information
in a single instance.

The Lightweight Directory Access Protocol (LDAP)
provides a means for accessing and managing remote
and distributed directories [1-3]. LDAP directories are
being used to store address books, contact information,
customer profiles, network resource information, policies
etc.
 Directories have assumed special significance in
enterprises where a single directory instance containing
employee and other organizational records is used by a
wide variety of internet and intranet applications. The
heterogeneous nature of directories allows them to be
used by several applications. However, this also means
that an overloaded directory could be a potential
bottleneck in an enterprise infrastructure.
 LDAP replication has widely been used for improving
performance, scalability and availability of directory
based web services. However, since a typical directory
can contain millions of records, the search performance
of replicas suffer due to disk access latency [4]. An
LDAP caching solution which provides significant hit

ratio, for a small fraction of cached entries is thus
desirable.
 This paper discusses the proxy cache implementation
for the OpenLDAP[5] directory server.

2. Notations
The LDAP search operation (also termed as an LDAP
query) is represented as:

q = (base, scope, filter, attrs)
base: <dn of the base of the search >
scope: Base | one | sub <scope of the search>
filter: <search condition>
attrs: <set of required attributes>

These parameters are collectively called the meta-data
corresponding to an LDAP query. LDAP filters are
represented using the string representation described in
[7].

3. Architecture
A typical directory server architecture consists of a
protocol front end which receives a client request, uses
the backend to perform the operation corresponding to
the request and sends results back to the client. The
backend abstracts the database from the front-end by
performing the read and write operations corresponding
to various LDAP operations.
 Figure 1 shows the architecture of an LDAP proxy
cache. It extends the meta backend [6] by including a
cache manager which handles search requests. The cache
manager maintains cache state and implements the query
containment, cache replacement and consistency control
(CC/CR in Figure 1) algorithms. The extended meta
backend is associated with one or more database
backends which are combined using the glue backend.
These backends store the cached entries. The cache
backend provides a query level interface to the cache
manager for performing read and write operations on the
database backends. It supports adding and removing a
query (i.e. corresponding entries) or searching the cache
for an answerable query by converting these operations

into the add, modify, delete and search operations which
are supported by the database backends. The cache
manager uses the meta backend functionalities to connect
to one or more backend directories using the LDAP
client API. Using meta backend allows the proxy cache
to work as a meta directory cache.

Figure 1: LDAP proxy cache architecture

4. Caching Algorithms
The following algorithms are implemented in the cache
manager:
1. Query containment.
2. Cache replacement.
3. Consistency control.

4.1. Query containment

General query containment

A query Q, is said to be contained in another query Q’, if
all of the following are true:

(i) The base of Q’ should be the same or a descendant
of the base of Q. The scope of Q’ must be sub except for

the case when the base of Q’ is the parent of base of Q
and the scope of Q is Base. In this case, the scope of Q’
can be either sub or one.
(ii) attrs in Q is a subset of attrs in Q’.
(iii) The filter of Q is more restrictive than (or contained
in) the filter of Q’, i.e. any entry satisfying the condition
specified by the filter of Q also satisfies the condition
specified by Q’.
 If LDAP query filters F1 and F2 consisting of a
boolean combination (AND, OR, NOT) of atomic filters are
such that (&(F1)(!F2)) is trivially inconsistent, then the
filter F1 is semantically contained in filter F2.
 Let the attribute set {x1,x2..xn} be the union of
attributes sets appearing in the filters F1 and F2. To be
trivially inconsistent there should not exist any set of
values {v1,v2,..vn} for attributes {x1,x2..xn} in their valid
ranges such that the condition specified by (&(F1)(!
F2)) is satisfied.
 If (&(F1)(! F2)) = B1 + B2 ..Bk where Bi is a conjunct
of atomic filters, then the condition can be written in
terms of Bi as follows: The query F1 is contained in F2
if � i=1..k, Bi is trivially inconsistent.
 A contained query is answerable (from the cache) if
attrs in the conditions above is interpreted as the union
of required attributes and the attributes appearing in the
search filter of the query.

Template based query containment

To reduce the complexity of the problem, we introduce
the concept of LDAP templates. Most queries generated
by applications are different from other similar queries
only in their assertion values. An LDAP template is
similar to a query but consists of a prototype filter
instead of a filter. The prototype filter is a filter without
any assertion values. Different filters can be generated
from the same prototype by supplying different assertion
values. The string representation of prototype filters is
similar to LDAP filters in [7], except that the assertion
values are missing. An example of a prototype filter is:

(&(givenName=)(sn=))

 If the cache supports only a few specified templates,
query containment between queries of two given
templates simply requires substituting their assertion
values in a pre-determined expression. In the current
proxy cache implementation a simplified version of
template based query containment is implemented, in
which a query is only answered from queries of its own
template.
 The implemented algorithm supports answering of
positive queries (no NOT operator) having equality,
ordering or substring assertions. The query containment
algorithm ensures that the correct syntaxes and matching
rules are applied when comparing two assertion values.

4.2. Cache replacement

Cache replacement uses a simple Least Recently
Used (LRU) policy. The metadata of the least recently
used query and entries belonging only to that query are
removed. A query is considered to be used when it
answers an incoming query. Cache replacement is
invoked when the cache size crosses a threshold (hi-
thresh) and continues till it is greater than a lo-thresh.

4.3. Consistency Control

A time to live (TTL) value is associated with queries.
The value is same for all queries of the same template.
After the time to live expires the query (and entries
belonging to only that query) are removed.

5. Caching Operations
The cache manager invokes the cache backend to add or
remove entries corresponding to a query or to search the
database backends for an answerable queries.

For adding or removing queries the callback
mechanism of OpenLDAP has been used. The
mechanism allows the routines for sending search entry
and search result to be overridden by those supplied by
the caller. If the search interface for a backend is invoked
using this mechanism, the supplied routine for sending
an entry is called once for every entry returned by the
search and the routine for sending result is called at the
end of the search. The callback mechanism has been
used to add/remove queries to/from the database
backends.

5.1. Adding a query

 Adding a query requires all its entries to be added in
the cache. However, since some of these entries might be
partially or completely cached. For each entry, it is
determined using an internal search request, whether the
entry is already cached. If the entry is already cached, an
internal modify is performed in the callback for sending
the entry, if not, the entry is added in the callback for
sending the search result.
 While adding/modifying an entry, a value for a cache
specific operational attribute q_uuid, is added to the
entry which represents the unique identifier of the query
being cached. An entry which belongs to multiple
queries has multiple values for the q_uuid attribute.
 The cache backend informs the cache manager after
adding a query, so that its metadata can be added.

5.2. Removing a query

 To remove a query with a given identifier, say ID, an
internal search: filter: (q_uuid=ID) is performed. In the
callback for sending the matching entry, the entry is
deleted if it has a single value for the q_uuid attribute.
Otherwise the entry is modified to have the value, ID

removed from its q_uuid attribute. The cache backend
informs the cache manager after removing a query, so
that its metadata can be removed.

6. Configuration
At configuration time, a list of cacheable templates is
specified. Queries belonging to only these templates are
cached. An incoming query is checked for containment
in the cached queries belonging to templates with the
same template string. If an incoming query can not be
answered from the cache, the results are obtained from
the backend directory server and sent to the client. If the
number of entries returned is within a cacheable limit,
the entries are added to the cache backend and the meta
data for the query is added.

6.1. Cache specific configuration directives

Three cache specific directives have been added to back-
meta.

1) cacheparams

Used to set various cache parameters. The syntax is:

cacheparams <lo_thresh> <hi_thresh> <numattrsets>
 <max entries> <consistency cycle time>

The first two parameters are used for cache replacement.
Cache replacement starts when the cache size crosses the
hi_thresh bytes and continues till the cache size is
greater than lo_thresh bytes . Total number of attributes
sets (as specified by the attrset directive) is given by
numattrsets. Queries are cached only if they correspond
to a cacheable template (specified by the addtemplate
directive) and the number of entries returned is less than
max entries .

Support for weak consistency is provided by associating
a time to live (TTL) with each query. The TTL is
specified while adding a template using the addtemplate
directive. The consistency checks are performed every
consistency cycle time seconds. Stale queries and entries
belonging to only those queries are removed.

Example:

 cacheparams 100000 120000 3 5 1000

2) attrset

Used to associate a set of attributes to an index.

attrset <index> <attr1> <attr2> <attr3> ...

Each attribute set is associated with an index number
from 0 to numattrsets-1. These indices are used by the
addtemplate directive to define cacheable templates.

Example:
 attrset 0 cn sn mail

3) addtemplate

Adds a cacheable template with a given TTL.

addtemplate <template string> <attr set index> <ttl>

template string representation is similar to [7] with any
values in simple/substring filters omitted. Some
examples of template strings are: (sn=), (age>=),
(&(sn=)(c=*)). First template could have queries with
equality and substring assertions. Second template
represents queries with a simple >= assertion and the
(c=*) in the third template represents a presence filter.
The attr set index is used to associate one of the attribute
sets defined by the attrset directive with a template. TTL
(in seconds) is used to associate a time to live with
queries of the template.

Example:

 addtemplate (&(sn=)(givenname=)) 0 3600

6.2. Example slapd.conf

In this section an example configuration file for slapd
when caching is enabled. To enable caching in the back-
meta backend, the following cache specific directives
should be specified.

1) General Directives

The schema file could be the same or a relaxed version
of the backend server. Since partial entries are also
cached, schema checks are relaxed while
adding/modifying entries.

 include <schema_file>
 <other general directives>

2) Database Backend directives

#subordinate
database ldbm

suffix "ou=people,dc=example,dc=com,cn=cache"
directory <database_dir>
cachesize 1000
other LDBM directives

parent
database ldbm
suffix "dc=example,dc=com,cn=cache"
directory <parent_database_dir>

cachesize 1000
other LDBM directives

3) Meta backend directives

database meta
rewriteEngine on

rule for rewriting DNs of entries to be
cached.
rewriteContext cacheResult
rewriteRule "(.*)dc=example,dc=com"
"%1dc=example,dc=com,cn=cache" ":"

rule for rewriting the base for searching the
cache for answerable queries
rewriteContext cacheBase
rewriteRule "(.*)dc=example,dc=com"
"%1dc=example,dc=com,cn=cache" ":"

rule for rewriting DNs of cached entries
before sending the result to the client.

rewriteContext cacheReturn
rewriteRule "(.*)dc=example,dc=com,cn=cache"
"%1dc=example,dc=com" ":"

#pointer(s) to backend directory server(s)
suffix "dc=example,dc=com"
uri ldap://<backend_hostport>/dc=example,dc=com
#setting cache parameters
cacheparams 10000 15000 4 50 1000

#attribute sets
attrset 0 cn title
attrset 1 homephone pager telephonenumber mail
attrset 2 postaladdress
attrset 3 member

#cacheable templates
addtemplate (uid=) 0 3600
addtemplate (sn=) 1 3600
addtemplate (sn=) 2 3600
addtemplate (&(objectclass=)(cn=)) 3 100000

The Relative Distinguished Name (RDN), cn=cache is
appended to the Distinguished Name (DN) of entries
added to the database backends. Thus DN rewriting, as
described by the rewriting rules above, is required while
adding entries to the cache and while sending entries to
the client.

7. Future Work
The proxy cache feature of OpenLDAP can be used to
improve client latency and scalability of directory based
services. Work on schema for representing queries and
templates in an LDAP directory and for supporting query
containment is underway. SLAPI based implementation
of the caching extension is under consideration.

8. References
[1] Hodges, J, Morgan, R, "Lightweight Directory Access

Protocol (v3): Technical Specification", RFC 3377
(http://www.rfc-editor.org/rfc/rfc3377.txt) September
2002

[2] Wahl M, Howes T, Kille S, “Lightweight Directory
Access Protocol (v3)”, RFC 2251 (http://www.rfc-
editor.org/rfc/rfc2251.txt), December 1997

[3] Wahl M, Coulbeck A, Howes T, Kille S Lightweight
Directory Access Protocol (v3): Attribute Syntax
Definitions, RFC 2252 (http://www.rfc-
editor.org/rfc/rfc2252.txt), December 1997

[4] Xin Wang, Henning Schulzrine, Dilip Kandlur,
Dinesh Verma, “Measurement and Analysis of
LDAP Performance”, International Conference on
Measurement and Modeling of Computer Systems,
ACM Sigmetrics, 2000

[5] OpenLDAP Project, Web page
(http://www.openldap.org)

[6] OpenLDAP Project, back-meta backend manual
page, slapd-meta(5) (http://www.openldap.org/
software/man.cgi?query=slapd-meta)

[7] Howes T, “The String Representation of LDAP
Search Filters”, RFC 2254 (http://www.rfc-
editor.org/rfc/rfc2251.txt), December 1997

