OpenLDAP

Highlights for 2.4
Howard Chu, hyc@symas.com
Chief Architect, Symas Corp
Chief Architect, OpenLDAP Project
ILUG 2007-09-10
OpenLDAP Project

• Open source code project
• Founded 1998
• Three core team members
• A dozen or so contributors
• Feature releases every 12-18 months
• Maintenance releases roughly monthly
OpenLDAP Releases

• Release 1.x 1998/08/08 – 2001/09/11
 – Basically the UMich 3.3 code
 – Supported LDAP version 2
• Release 2.0 2000/08/31 – 2002/09/22
 – Introduced LDAP version 3 support
 – Added security with SASL and SSL/TLS
• Release 2.1 2002/06/09 – 2004/04/15
 – Significantly faster than 2.0
 – Added Unicode support
 – Added back-bdb backend
OpenLDAP Releases, cont'd

• Release 2.2 2003/12/31 – 2005/11/21
 – Further optimization
 – Added back-hdb
 – More extensibility using slapd overlays and/or SLAPI plugins

• Release 2.3 2004/12/30 – now
 – Component-based matching
 – More overlays
 – Dynamic reconfiguration
OpenLDAP Releases, cont'd

• Release 2.4 now – ongoing (2.4.5 2007/09/04)
 – More functionality
 • More overlays
 • Multimaster syncrepl
 – More manageability
 • Further dynamic config work
 • More monitoring/tuning info
OpenLDAP Releases, cont'd

• 2.4....
 – More performance
 • Further optimized frontend
 • Reduced locking contention in backend
 – More usability
 • Feature-complete manual pages
 • More extensive Admin Guide
A Word About Symas

• Founded 1999

• Founders from Enterprise Software world
 – *platinum* Technology (Locus Computing)
 – IBM

• Howard joined OpenLDAP in 1999
 – One of the Core Team members
 – Appointed Chief Architect January 2007
Notable Features

• Introduced in 2.1:
 – Transactional Backend (back-bdb)

• Introduced in 2.2:
 – Hierarchical Backend (back-hdb)
 – Content-Sync Replication (syncrepl)
 – Overlays

• Introduced in 2.3:
 – Dynamic Configuration (back-config)
• Fully transactional backend with full ACID semantics
 – Atomicity: changes are all-or-nothing
 – Consistency: no structural corruption
 – Isolation: no in-between views of data
 – Durability: once a write returns success, it cannot be undone
• Extremely reliable
back-hdb

- Fully hierarchical backend
 - Higher write throughput than other directory backends
 - Supports subtree renames in O(1) time
 - Based on back-bdb code – offers same transactional reliability
syncrepl

• Replaces the old slurpd-based replication mechanism
• Documented in RFC4533
• Very flexible operation with minimal administration overhead
Slapd overlays

- Modular plugin framework using slapd's native API
- Allows for rapid development and deployment of enhancements and new features
Overlay Examples

- Enterprise-oriented features
 - In-directory password policy
 - Referential integrity
 - Translucency
 - Attribute uniqueness
 - Value sorting
 - In-directory logging
Dynamic Configuration

- **cn=config database**
 - Config engine is backward compatible with slapd.conf
 - Allows runtime changes of almost all settings
 - ACLs
 - Schema
 - Databases
 - DB indexing
 - Dynamic modules
 - Changes take effect immediately, no downtime required
Syncrepl

• Delta-syncrepl
 – Addresses bandwidth concerns from plain syncrepl
 – Relies on a persistent log of changes
 – Ordering of log entries is fully serialized; no out of order updates
 – Automatic fallback to plain syncrepl if consumer loses sync with log
• Push-mode syncrepl
 – Just a syncrepl consumer sitting on back-ldap
 – Can add a customization overlay for mapping the contextCSN to a suitable remote attribute, or to store the contextCSN locally
 – Provides a simple, robust, dynamically configurable replacement for slurpd
• **Mirrormode**
 – Allows a single active master and many standby masters
 – Preserves single master consistency while allowing automatic promotion of alternate masters
 – Requires use of an external frontend to guarantee that writes are only sent to a single master at a time
 – Addresses the high availability/SPOF concerns with minimal fuss
 – Already in use at some Symas customer sites
Syncrepl...

• Full N-Way Multimaster Support
 – requires synchronized clocks for all contexts
 – requires use of hostID field of CSN
 – requires per-consumer contextCSNs in addition to (*not instead of*) provider contextCSN
 – New in OpenLDAP 2.4
Syncrepl...

- Arbitrary topologies supported
 - any combination of partial, fractional, glued, cascaded, etc.
 - includes replication of cn=config
Syncrepl Config Example

dn: cn=config
objectClass: olcGlobal
cn: config

dn: olcDatabase={0}config,cn=config
objectClass: olcDatabaseConfig
olcDatabase: {0}config
olcSyncRepl: rid=001 provider=$URI binddn="cn=config" bindmethod=simple
 credentials=$CONFIGPW searchbase="cn=config" type=refreshOnly
 interval=00:00:00:10
Manageability

- 12 15 17 19 overlays converted to dynamic configuration
 - only 6 converted in OL 2.3
- Full schema editing support
 - only schema adds in OL 2.3
- Full ACL support for config
 - cn=config restricted to rootDN in OL 2.3
- More extensive monitoring info
 - backend cache statistics, etc.
Performance

- Fixed Lightweight Dispatcher
 - eliminated unnecessary locking in connection manager
 - slapd-auth test against back-null yielded over 32000 binds per second on 100Mbps ethernet
 - over 128000 frames per second - ~90% of available bandwidth – essentially saturated
 - No other LDAP server we tested delivers this speed on identical hardware
 - Experimental in 2.3, default in 2.4
Performance...

• libc malloc() still has a major impact
 – refactored Entry and Attribute management to further reduce number of calls to malloc
 – using a thread-oriented allocator like hoard provides further advantages
see openldap–devel August 30 2006...
malloc Performance

- Tested on 2.6 Linux kernel with glibc 2.3.3
- Results will obviously vary by platform
- glibc malloc does not handle tight memory conditions gracefully
- libhoard is marginally fastest
- Google tcmalloc is most space-efficient
- umem on non-Solaris appears unmaintained
Performance...

Authentication Rate

DB Entries
- 250K
- 1M
- 2.5M

Auths/sec
- 0
- 2000
- 4000
- 6000
- 8000
- 10000
- 12000
- 14000
- 15000
- 16000

ApacheDS 1.0.1
OpenDS 0.1-34
FedoraDS 1.0.4
OpenLDAP 2.3.34
Performance...

Search, entries per second

<table>
<thead>
<tr>
<th>DB Entries</th>
<th>ApacheDS 1.0.1</th>
<th>OpenDS 0.1-34</th>
<th>FedoraDS 1.0.4</th>
<th>OpenLDAP 2.3.34</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-250K</td>
<td>1680</td>
<td>8666</td>
<td>8267</td>
<td></td>
</tr>
<tr>
<td>1M</td>
<td>9231</td>
<td>10296</td>
<td>9790</td>
<td></td>
</tr>
<tr>
<td>2.5M</td>
<td>48923</td>
<td>67249</td>
<td>27044</td>
<td></td>
</tr>
</tbody>
</table>
Performance...

Search Times

(lower is better)
Performance...

DB Load Times
(lower is better)

Time

DB Entries

250K
1M
2.5M

00:45.00
03:18.18
08:23.84

01:04.10
04:59.64
11:33.93

01:51.20
08:46.13
20:23.51

50:51.95

OpenLDAP 2.3.34
FedoraDS 1.0.4
OpenDS 0.1-34
ApacheDS 1.0.1
Performance...

- benchmark details available on www.symas.com
- we may want to consider investing effort in a C-based benchmarking framework
 - existing frameworks are not credible
 - DirectoryMark in perl, fast enough to measure slow directories, not fast enough for OpenLDAP
 - SLAMD in java, same story again
Performance...

- Scaling to large deployments
 - Demonstrated performance at over 150 million entries
 - November 2005: 16600 queries/second, 3400 updates/second
 - April 2006: 22000 queries/second, 4800 updates/second
 - Over 1 terabyte of real data
 - Other popular directories’ claims of scaling are provably false
 - Several other products were tested with the same data, all of them failed to meet the test requirements
 - Only OpenLDAP passed
Performance...

- Scaling to multiple CPUs
 - Single client, ldapsearch across entire 1.3GB database in 0.70 seconds
 - Two clients concurrent, ldapsearch in 0.71 seconds
 - 4 clients, 1.42 seconds
 - Practically Perfect Parallel Scaling
 - (Using AMD64 X2 dual-core processor)
Worst Case Search Performance

Search performance

Process size, KB

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000 2250000 2500000

0:00.00 0:04.32 0:08.64 0:12.96 0:17.28 0:21.60 0:25.92 0:30.24 0:34.56 0:38.88

2.0.27 size
2.0.27 time
2.1.30 size
2.1.30 time
2.2.30 size
2.2.30 time
2.3.33 size
2.3.33 time
2.4 size
2.4 time

The Directory Guys
Cached Search Performance

Cached Search performance

Process size, KB

Start Single Single Four Four Four Four

00:00.00 00:08.64 00:17.28 00:25.92 00:34.56 00:43.20 00:51.84 01:00.48

00:00.00 00:08.64 00:17.28 00:25.92 00:34.56 00:43.20 00:51.84 01:00.48

01:09.12 01:00.48 01:17.76 01:26.40 01:35.04 01:43.68 01:52.32 02:01.00

01:00.48 01:17.76 01:26.40 01:35.04 01:43.68 01:52.32 02:01.00 02:09.68

2.0.27 size 2.0.27 time 2.1.30 size 2.1.30 time 2.2.30 size 2.2.30 time 2.3.33 size 2.3.33 time 2.4 size 2.4 time
Cached Search Performance

Cached Search performance

Runtime, seconds

Start Single Single Single Single Four Four Four Four Four

00:00.00 00:00.86 00:01.73 00:02.59 00:03.46 00:04.32 00:05.18 00:06.05 00:06.91 00:07.78 00:08.64 00:09.50 00:10.37 00:11.23

2.0.27 time 2.1.30 time 2.2.30 time 2.3.33 time 2.4 time
ldapadd performance

- DB taking 2:42.64 for slapadd -q took 1:33:08.74 using ldapadd
- Optimized server and client in 2.4 bring the time down to 5:20.00
- Remaining network and encode/decode overhead unlikely to go away
The Road Ahead...

• Work on scale-out, vs scale-up
 – allow multi-terabyte DBs to be served without requiring a single giant server
 • page-oriented, lock-free DB to allow multiple backends to serve portions of a single shared DB
 • distributed indexing
 • cluster-friendly optimizations
The Road Ahead...

• More LDAP config functionality
 – Reduce / eliminate filesystem dependencies, so that all administration can be done without shell access
 • TLS server certs in LDAP DB instead of files
 • Dynamically loadable modules as LDAP objects
 • Automatic creation of filesystem directories for DBs
Final Thoughts

• OpenLDAP 2.4 delivers dramatic improvements while maintaining backward compatibility

• The OpenLDAP community continues to thrive
 – your thoughts, ideas, and participation are always welcome
 – when we work together everyone wins
Authentication Performance
Authentication Performance

- AMD 4-processor dual-core
- 10 million entry DB
BDB 4.2 performance

Malloc performance

Process size, KB

Start | Single | Single | Single | Single | Four | Four | Four | Four | Four

00:00.00 | 00:17.28 | 00:34.56 | 00:51.84 | 01:09.12 | 01:26.40 | 01:43.68 | 02:00.96 | 02:18.24 | 02:35.52

00:00.00 | 00:00.96 | 00:14.36 | 00:28.2 | 00:42.04 | 00:55.92 | 01:09.76 | 01:23.6 | 01:37.44 | 01:51.32

00:00.00 | 00:01.09 | 00:23.5 | 00:47.0 | 00:70.5 | 00:94.0 | 01:17.5 | 01:41.0 | 02:04.5 | 02:28.0

00:00.00 | 00:00.51 | 00:17.28 | 00:34.56 | 00:51.84 | 01:09.12 | 01:26.40 | 01:43.68 | 02:00.96 | 02:18.24

Glibc size | Glibc time | Hoard size | Hoard time | Umem size | Umem time | Tcmalloc size | Tcmalloc time
BDB 4.5 Performance

Malloc performance

- Process size, KB
- Glibc size
- Glibc time
- Hoard size
- Hoard time
- Umem size
- Umem time
- Tcmalloc size
- Tcmalloc time
Current Performance

Malloc performance

Process size, KB

- Glibc size
- Glibc time
- Hoard size
- Hoard time
- Umem size
- Umem time
- Tcmalloc size
- Tcmalloc time

The Directory Guys
Database Parameters

- 380836 entries
 - Range in size from 3K to 10MB
- Total size on disk ~1.3GB
- Running on Socket939 2.4GHz AMD64 X2 w/512KB L2 cache per core, 4GB DDR400 ECC/REG RAM
- No disk I/O during searches
- Using 2.3 as of November 2006 unless otherwise noted
2.0.27 DB Parameters

Ldbm BDB 4.2.52 dbnosync, dbcachesize 512MB
slapadd 113.455u 8.004s 2:16.96 88.6% 0+0k 0+0io 0pf+0w
total 1281133
-rw------- 1 hyc users 88879104 2007-02-09 23:46 dn2id.dbb
-rw------- 1 hyc users 1220915200 2007-02-09 23:46 id2entry.dbb
-rw------- 1 hyc users 8192 2007-02-09 23:46 nextid.dbb
-rw------- 1 hyc users 798720 2007-02-09 23:46 objectClass.dbb
2.1.30 DB Parameters

bdb BDB 4.2.52 TXN_NOSYNC, TXN_NOT_DURABLE
slapadd 162.582u 8.300s 3:04.30 92.7% 0+0k 0+0io 7189pf+0w
total 850295

-rw------- 1 hyc users 16384 2007-02-10 04:35 __db.001
-rw------- 1 hyc users 536870912 2007-02-10 04:35 __db.002
-rw------- 1 hyc users 2359296 2007-02-10 04:35 __db.003
-rw------- 1 hyc users 663552 2007-02-10 04:35 __db.004
-rw------- 1 hyc users 16384 2007-02-10 04:35 __db.005
-rw-r--r-- 1 hyc users 177 2007-02-10 01:30 DB_CONFIG
-rw------- 1 hyc users 79978496 2007-02-10 04:38 dn2id.bdb
-rw------- 1 hyc users 782745600 2007-02-10 04:38 id2entry.bdb
-rw------- 1 hyc users 28 2007-02-10 04:35 log.0000000001
-rw------- 1 hyc users 6553600 2007-02-10 04:38 objectClass.bdb
2.2.30 DB Parameters

bdb BDB 4.2.52 TXN_NOSYNC, TXN_NOT_DURABLE

slapadd 284.789u 10.836s 5:04.65 97.0% 0+0k 0+0io 7136pf+0w
total 1869554

-rw------- 1 hyc users 16384 2007-02-10 02:42 __db.001
-rw------- 1 hyc users 536870912 2007-02-10 02:42 __db.002
-rw------- 1 hyc users 2359296 2007-02-10 02:42 __db.003
-rw------- 1 hyc users 663552 2007-02-10 02:42 __db.004
-rw------- 1 hyc users 32768 2007-02-10 02:42 __db.005
-rw-r--r-- 1 hyc users 177 2007-02-10 01:30 DB_CONFIG
-rw------- 1 hyc users 79978496 2007-02-10 02:47 dn2id.bdb
-rw------- 1 hyc users 1288781824 2007-02-10 02:47 id2entry.bdb
-rw------- 1 hyc users 28 2007-02-10 02:47 log.0000000001
-rw------- 1 hyc users 6549504 2007-02-10 02:47 objectClass.bdb
2.3.33 DB Parameters

bdb BDB 4.2.52 TXN_NOSYNC, TXN_NOT_DURABLE
slapadd 118.447u 9.256s 2:17.26 93.0% 0+0k 0+0io 7126pf+0w
total 1344299

-rw-r--r-- 1 hyc users 2048 2007-02-10 04:42 alock
-rw------- 1 hyc users 16384 2007-02-10 04:40 __db.001
-rw------- 1 hyc users 536870912 2007-02-10 04:40 __db.002
-rw-r--r-- 1 hyc users 177 2007-02-10 01:30 DB_CONFIG
-rw------- 1 hyc users 79978496 2007-02-10 04:42 dn2id.bdb
-rw------- 1 hyc users 1288142848 2007-02-10 04:42 id2entry.bdb
-rw------- 1 hyc users 6549504 2007-02-10 04:42 objectClass.bdb
2.4 DB Parameters

bdb BDB 4.2.52 TXN_NOSYNC, TXN_NOT_DURABLE

slapadd 138.416u 10.060s 2:39.27 93.2% 0+0k 0+0io 7127pf+0w

total 1348137

-rw-r--r-- 1 hyc users 2048 2007-02-10 05:39 alock
-rw------- 1 hyc users 16384 2007-02-10 05:39 __db.001
-rw------- 1 hyc users 536870912 2007-02-10 05:39 __db.002
-rw------- 1 hyc users 2359296 2007-02-10 05:39 __db.003
-rw------- 1 hyc users 663552 2007-02-10 05:39 __db.004
-rw------- 1 hyc users 32768 2007-02-10 05:39 __db.005
-rw-r--r-- 1 hyc users 177 2007-02-10 01:30 DB_CONFIG
-rw------- 1 hyc users 79978496 2007-02-10 05:38 dn2id.bdb
-rw------- 1 hyc users 1292042240 2007-02-10 05:38 id2entry.bdb
-rw------- 1 hyc users 6549504 2007-02-10 05:38 objectClass.bdb