
Dave Steck, Novell, Inc.
The Leading Supplier of Net Services Software

Oct 23, 2000
Dave Steck
Novell, Inc.

Proposed String Conversion5

Functions for LDAP C SDK

1. The Need for Conversion Functions
10

Page: 1
Directory data in the LDAPv3 C APIs is in UTF-8 format. Developers often write applications assuming
the characters set is limited to ASCII characters. However, as internationalization efforts increase, these
applications will fail and require difficult retrofitting to deal with UTF-8 characters correctly.

15
Part of the problem is that most platforms have no standard way to convert between Multi-byte, Unicode
and UTF-8 strings. In cases where the platform does supply conversion routines, they may be specific to
the platform.

It is the goal of this proposal to provide LDAP C developers standard cross-platform functionality to be20
able to convert easily between Mutli-byte, Unicode, and UTF-8 strings.

We would also like to expose the UTF-8 utility functions currently used internally in the OpenLDAP
library; utf8_next, utf8_prev, utf8_strchr, etc.

25
In addition, the run-time libraries we deliver do not include the LDIF routines for converting data to or
from base64 encoding. We would like to expose these to users of our LDAP SDK.

We propose adding or exposing functions for:
Multi-byte ßà Unicode conversion30
UTF-8 ßà Unicode conversion
Multi-byte ßà UTF-8 conversion
UTF-8 Utility functions
Base64 encoding/decoding functions

35

2. Multi-byte ßà Unicode Conversions

There are already 5 ANSI C functions dealing with these conversions. They aren’t as powerful as the
Windows or NetWare extended functions. In particular, they work only on the default code page as defined40
by the current locale.

These functions are simple and are available on any ANSI C platform. They don’t allocate memory or
return a pointer to the application when doing a conversion. But they can return the required size of the
output buffer for a particular input string, allowing the application to allocate memory if necessary. The45
string versions of the functions return an error if an unmappable characters is encountered. Since single-
character versions of the functions are also available, developers can implement other error handling
strategies, such as using replacement characters, or converting to a special sequence allowing round trip
conversion without losing characters.

50
The functions are prototyped in <stdlib.h>

Dave Steck, Novell, Inc.
The Leading Supplier of Net Services Software

mbtowc - Convert a single multi-byte character to a wide character.
wctomb - Convert a single wide character to a multi-byte character.
mbstowcs - Convert a multi-byte string to a wide character string.55
wcstombs - Convert a wide character string to a multi-byte string.
mblen - Return the number of bytes in a multi-byte character.

While developers could use these routines directly, we propose adding wrapper functions to the SDK for a
couple reasons:60
1) So they are documented cleanly and consistently with the other conversion functions in the SDK.
2) It decouples the SDK from the system routines, allowing an implementer freedom to supply a

different implementation.

We propose the functions be named with “lstr_” prefixes. While useful to an LDAP SDK, they’re really65
not part of the LDAP protocol, so we hesitate giving them an “ldap_” prefix. The “lstr_” prefix clearly
indicates the string manipulation nature of the routines, and groups them together in the documentation.

By basing the conversion routines on these ANSI standard functions, porting to other platforms becomes
much easier.70

Issue with wchar_t
These ANSI routines use wchar_t arguments. The size of wchar_t is 2 bytes on Windows and Netware,
and 4 bytes on Unix. Unicode strings are often typed as “unsigned short *” in implementations. However,
on Unix platforms, compiler constructs like L”xyz” and string functions like wcslen() would not work with75
strings of this type. Basing the functions on wchar_t works better for cross-platform code for these reasons,
although developers must keep the 2-byte vs 4-byte issue in mind, not assuming one or the other.

2.1 lstr_mbtowc - Convert a single multi-byte character to a wide character.80

int lstr_mbtowc(wchar_t *wchar, const char *mbchar, size_t count)

wchar (OUT) Points to a wide character code to receive the
converted character.85

mbchar (IN) Address of a sequence of bytes.

count (IN) The number of bytes of the mbchar argument to check.
This should normally be MB_CUR_MAX.90

Return Value:
If successful, the function returns the length in
bytes of the multi-byte character.

95
If mbchar is NULL or points to an empty string, or if count
is zero, 0 is returned.

If mbchar contains an invalid multi-byte character, -1 is
returned.100

2.2 lstr_wctomb - Convert a single wide character to a multi-byte character.

int lstr_wctomb(char *mbchar, wchar_t wchar)105

mbchar (OUT) Points to a byte array to receive the multi-byte

Dave Steck, Novell, Inc.
The Leading Supplier of Net Services Software

characters.

wchar (IN) The wide character to convert.110

Return Value:
If successful, the function returns the number of bytes in
the converted multi-byte character.

115
If the wide character is the null character, the function
returns 1 and a null is written to mbchar.

If mbchar is NULL, 0 is returned.
120

If the wide character cannot be mapped to the local code
page, the function returns –1.

2.3 lstr_mbstowcs - Convert a multi-byte string to a wide character string.125

size_t mbstowcs(wchar_t *wcstr, const char *mbstr, size_t count)

wcstr (OUT) Points to the array of wide chars to receive the
converted string. May be NULL.130

mbstr (IN) The null-terminated string of multi-byte characters
to

be converted.
135

count (IN) The number of multi-byte characters to convert, or
equivalently, the size of the output buffer in wide
characters.

Return Value:140
If successful, the function returns the number of wide
characters written to wcstr, excluding the null termination
character, if any.

If wcstr is NULL, the function returns the number of wide145
characters required to contain the converted string,
excluding the null termination character.

If an invalid multi-byte sequence is encountered, the
function returns –1.150

The output string will be null terminated if there is space for it in
the output buffer.

2.4 lstr_wcstombs - Convert a wide character string to a multi-byte string.155

size_t wcstombs(char *mbstr, const wchar_t *wcstr, size_t count)

mbstr (OUT) Points to the byte array to receive the converted
multi-byte string.160

wcstr (IN) The null-terminated wide character string to convert.

count (IN) The size of the output buffer in bytes.

Dave Steck, Novell, Inc.
The Leading Supplier of Net Services Software

165
Return Value:

If successful, the function returns the number of bytes
written to mbstr, excluding the null termination
character, if any.

170
If mbstr is NULL, the function returns the number of bytes
required to contain the converted string, excluding the
null termination character.

If the function encounters a wide character that cannot175
be mapped to a multi-byte sequence, the function returns –

1.

The output string will be null terminated if there is space for it in
the output buffer.180

2.5 lstr_mblen - Return the number of bytes in a multi-byte character.

int mblen(const char *mbchar, size_t count)
185

mbchar (IN) Points to the multi-byte character sequence.

count (IN) The number of bytes in mbchar to check. This should
normally be set to MB_CUR_MAX.

Return Value:190
If successful, the function returns the number of bytes in
the multi-byte character (1 or 2).

If mbchar is NULL or points to an empty string, or if count
is 0, the function returns 0.195

If mbchar contains an invalid multi-byte characterm, the
function returns –1.

200

3. UTF-8 ßà Unicode conversions

The following new conversion routines will be added, following the pattern of the Multi-byte to Unicode
routines.
 int lstr_utf8towc - Convert a single UTF-8 encoded character to a wide character.205
 int lstr_wctoutf8 - Convert a single wide character to a UTF-8 sequence.
 int lstr_utf8stowcs - Convert a UTF-8 string to a wide character string.
 int lstr_wcstoutf8s - Convert a wide character string to a UTF-8 string.

210
3.1 lstr_utf8towc - Convert a single UTF-8 encoded character to a wide character.

int lstr_utf8towc (wchar_t *wchar, const char *utf8char)

wchar (OUT) Points to a wide character code to receive the215
converted character.

utf8char (IN) Address of the UTF8 sequence of bytes.

Return Value:220

Dave Steck, Novell, Inc.
The Leading Supplier of Net Services Software

If successful, the function returns the length in
bytes of the UTF-8 input character.

If utf8char is NULL or points to an empty string, the
function returns 1 and a NULL is written to wchar.225

If utf8char contains an invalid UTF-8 sequence -1 is
returned.

230
3.2 lstr_wctoutf8 - Convert a single wide character to a UTF-8 sequence.

int lstr_wctoutf8 (char *utf8char, wchar_t wchar)

utf8char (OUT) Points to a byte array to receive the converted UTF-8235
string.

wchar (IN) The wide character to convert.

Return Value:240
If successful, the function returns the length in bytes of
the converted UTF-8 output character.

If wchar is NULL, the function returns 1 and a NULL is
written to utf8char.245

If wchar cannot be converted to a UTF-8 character, the
function returns –1.

3.3 lstr_utf8stowcs - Convert a UTF-8 string to a wide character string.250

int lstr_utf8stowcs (wchar_t *wcstr, const char *utf8str, size_t count)

wcstr (OUT) Points to a wide char buffer to receive the
converted wide char string.255

utf8str (IN) Address of the null-terminated UTF-8 string to
convert.

count (IN) The number of UTF-8 characters to convert, or260
equivalently, the size of the output buffer in wide
characters.

Return Value:
If successful, the function returns the number of wide265
characters written to wcstr, excluding the null termination
character, if any.

If wcstr is NULL, the function returns the number of wide
characters required to contain the converted string,270
excluding the null termination character.

If an invalid UTF-8 sequence is encountered, the
function returns –1.

275
The output string will be null terminated if there is space for it in
the output buffer.

Dave Steck, Novell, Inc.
The Leading Supplier of Net Services Software

3.4 int lstr_wcstoutf8s - Convert a wide character string to a UTF-8 string.
280

int wcstoutf8s (char *utf8str, const wchar_t *wcstr, size_t count)

utf8str (OUT) Points to a byte array to receive the converted
UTF-8 string.

285
wcstr (IN) Address of the null-terminated wide char string to

convert.

count (IN) The size of the output buffer in bytes.
290

Return Value:
If successful, the function returns the number of bytes
written to utf8str, excluding the null termination
character, if any.

295
If utf8str is NULL, the function returns the number of
bytes required to contain the converted string, excluding
the null termination character.

If the function encounters a wide character that cannot300
be mapped to a UTF-8 sequence, the function returns –1.

The output string will be null terminated if there is space for it in
the output buffer.

305

4. Multi-byte ßà UTF-8 Conversions

The following new routines will be added, following the same pattern. These are the functions that we
believe most LDAP C programmers would use, and they can be built upon the previously defined310
functions. These functions will be implemented by converting the string from Multibyte-to-Wide, then
from Wide-to-UTF8, or vice versa.

 lstr_mbtoutf8 - Convert a multi-byte character to a UTF-8 character.
 lstr_utf8tomb - Convert a UTF-8 character to a multi-byte character.315
 lstr_mbstoutf8s - Convert a multi-byte string to a UTF-8 string.
 lstr_utf8stombs - Convert a UTF-8 string to a multi-byte string.

4.1 lstr_mbtoutf8 - Convert a multi-byte character to a UTF-8 character.
320

int lstr_mbtoutf8 (char *utf8char, const char *mbchar, size_t count)

utf8char (OUT) Points to a byte buffer to receive the
converted UTF-8 character.

325
mbchar (IN) Address of a sequence of bytes.

count (IN) The number of bytes of the mbchar argument to check.
This should normally be MB_CUR_MAX.

330
Return Value:

Dave Steck, Novell, Inc.
The Leading Supplier of Net Services Software

If successful, the function returns the length in
bytes of the UTF-8 output character.

If mbchar is NULL or points to an empty string, the335
function returns 1 and a null byte is written to utf8char.

If count is zero, 0 is returned and nothing is written to
utf8char.

340
If mbchar contains an invalid multi-byte character, -1 is
returned.

4.2 lstr_utf8tomb - Convert a UTF-8 character to a multi-byte character.345

int lstr_utf8tomb (char *mbchar, const char *utf8char)

mbchar (OUT) Points to a byte buffer to receive the converted
multi-byte character.350

utf8char (IN) Address of the UTF-8 character sequence.

Return Value:
If successful, the function returns the length in355
bytes of the multi-byte output character.

If utf8char is NULL or points to an empty string, the
function returns 1 and a null byte is written to mbchar.

360
If utf8char contains an invalid UTF-8 sequence, -1 is
returned.

4.3 lstr_mbstoutf8s - Convert a multi-byte string to a UTF-8 string.365

int lstr_mbstoutf8s (char *utf8char, const char *mbchar, size_t count)

utf8char (OUT) Points to a byte buffer to receive the
converted UTF-8 string370

mbchar (IN) Address of the null-terminated multi-byte input
string.

count (IN) The number of bytes of the mbchar argument to check.375
This should normally be MB_CUR_MAX.

Return Value:
If successful, the function returns the length in
bytes of the UTF-8 output string, excluding the null380
terminator, if present.

If mbchar is NULL or points to an empty string, the
function returns 1 and a null byte is written to utf8char.

385
If count is zero, 0 is returned and nothing is written to
utf8char.

Dave Steck, Novell, Inc.
The Leading Supplier of Net Services Software

If mbchar contains an invalid multi-byte character, -1 is
returned.390

4.4 int lstr_utf8stombs - Convert a UTF-8 string to a multi-byte string.

395
int lstr_utf8stombs (char *mbstr, const char *utf8str, size_t count)

mbstr (OUT) Points to a byte buffer to receive the
converted multi-byte

400
utf8str (IN) Address of the null-terminated UTF-8 string to

convert.

count (IN) The size of the output buffer in bytes.
405

Return Value:
If successful, the function returns the number of bytes
written to mbstr, excluding the null termination
character, if any.

410
If mbstr is NULL, the function returns the number of bytes
required to contain the converted string, excluding the
null termination character.

If an invalid UTF-8 character is encountered, the415
function returns –1.

The output string will be null terminated if there is space for it in
the output buffer.

420

5. UTF8 Utility functions

OpenLDAP recently added several utility functions for dealing with UTF-8 strings. The functions were
named with the “ldap_” prefix. We would suggest naming these with a different prefix, as discussed425
above, and exposing them. The optimization macros would also be exposed.

Functions:
lstr_utf8_charlen(p) - Returns the byte length of this UTF-8 character.
lstr_utf8_chars(p) - Returns the # of chars (not bytes) in a null-terminated UTF-8 string.430
lstr_utf8_next(p) - Returns the address of the next UTF-8 character.
lstr_utf8_prev(p) - Returns the address of the previous UTF-8 character.
lstr_utf8_copy(d,s) - Copies one character from src to dest.

Macros. Avoids a function call if it’s an ASCII character.435
LSTR_UTF8_ISASCII(c) - Returns 1 if c < 0x80.
LSTR_UTF8_CHARLEN(p)
LSTR_UTF8_NEXT(p)
LSTR_UTF8_PREV(p)
LSTR_UTF8_INCR(p)440
LSTR_UTF8_DECR(p)
LSTR_UTF8_COPY(d,s)

Dave Steck, Novell, Inc.
The Leading Supplier of Net Services Software

String functions that deal with single byte characters, modified to work for UTF-8 multiple-byte characters.
Could be useful. Probably expose these.445

lstr_utf8_strchr
lstr_utf8_strspn
lstr_utf8_strcspn
lstr_utf8_strpbrk
lstr_utf8_strtok (We would suggest changing name to lstr_utf8_strtok_r)450

6. Binary ß à Base64 conversions

We would like to expose the routines in the current LDIF library to our developers in the form of a455
dynamic library as opposed to a static library. This requires minimal or no changes to the existing
OpenLDAP source.

The existing routines to expose are:
ldif_read_record() - Reads the next record from a FILE stream into a buffer,460

with newline characters. Buffer memory is allocated by the library.

ldif_getline() - Get the next “line” from a buffer with newline characters. Continuation lines are
combined into one big line.

465
ldif_parse_line() - Parses a big line consisting of attribute: value into its components. If the value

is base64 encoded (indicated by a double colon), the base64 value is decoded.

ldif_is_not_printable() - Returns TRUE if the input string must be base64 encoded in an LDIF
file.470

ldif_put() - Puts a line consisting of an attribute and value to a buffer in LDIF format. A “type”
 argument controls how the encoding is done. The buffer is allocated by the library.

ldif_sput() - Same as ldif_put() except the buffer is passed in by the application and is assumed475
 to be large enough to contain the data.

6.1 Freeing memory.

If the LDIF functions are moved to the main LDAP library, memory480
allocated by LDIF functions could be freed with ldap_memfree().
However, if the functions were ever moved to a separate dynamic
library, some platforms would require they be freed by a function in
that library. To keep the options open, we propose adding this
routine. Memory allocated by any “ldif_” routines should be freed with485
this one.

void ldif_memfree(void *p)

