
OpenLDAP Development

Back-hdb – Hierarchical Backend
Howard Chu March 21, 2003

hyc@symas.com

Motivation

• Support ModDN/Subtree Rename
• Avoid the Quadratic growth in DN2ID
• Enhance update performance
• Purist – it’s a hierarchical namespace, after

all!

Review of back-bdb DN2ID

• Uses same DN2ID design as back-ldbm
• Can locate any DN with only 1 DB call –

good for fast searching
• Maintains explicit list of onelevel and

subtree IDs per entry – also good for fast
searching

Back-bdb DN2ID drawbacks

• Slow for updates, some kinds of updates are
impossible/impractical (e.g. subtree rename)
– Costs a minimum of 2 DB updates plus 1 per level of

DN depth to Add/Delete entries
– Stores excessive redundant DN information
– Paradoxically, the deeper/more organized the tree, the

worse it performs
• Historically, people speak of LDAP as “good for

reads, bad for writes” – this is largely due to the
DN2ID design, not the LDAP/X.500 specs

Back-bdb DN2ID example

o=org

ou=biz

c=us

cn=Joe

cn=Bob

=c=us:1; %c=us:2; @c=us: 1,2,3,4,5

=o=org,c=us:2; %o=org,c=us:3;
 @o=org,c=us: 2,3,4,5

=ou=biz,o=org,c=us:3; %ou=biz,o=org,c=us: 4,5;
@ou=biz,o=org,c=us: 3,4,5

=cn=bob,ou=biz,o=org,c=us: 4;
@cn=bob,ou=biz,o=org,c=us: 4

=cn=joe,ou=biz,o=org,c=us: 5;
@cn=joe,ou=biz,o=org,c=us: 5

Back-bdb DN2ID example (2)

• 5 nodes in DIT
• 13 keys in database
• 23 data items in these 13 keys
• Keys are long, consume more DB pages
• It only gets worse from here…

Back-hdb Principles

• Only store RDNs and parent references
– Eliminates redundant DN storage
– Allows subtree rename
– Performs Add/Delete/ModRDN with only 1 DB update

– O(constant) instead of O(n) efficiency.

• Sacrifices search performance?
– Requires Depth(DN) DB searches to locate a base DN
– No subtree IDLs, requires recursive DB searches

Back-hdb DN2parent example

o=org

ou=biz

c=us

cn=Joe

cn=Bob

0: c=us,1

1: o=org,2

2: ou=biz,3

3: cn=bob,4

3: cn=joe,5

Back-hdb DN2parent (2)

• 5 nodes in DIT
• 4 keys in database
• 5 data items in these 4 keys
• Keys are short, DB remains small

Back-hdb “Sacrifices?”

• Back-bdb DN2ID search is always O(log(N)).
– Efficiency is guaranteed by Btree balancing
– But each compare is over a full DN – expensive
– N is large, due to subtree/onelevel IDLs

• Back-hdb best case is O(log(N)).
– Efficiency not guaranteed, poor DIT layout will have

negative effects
– But each compare is only over an RDN – very cheap
– N is small, no redundant IDLs cluttering things up

Back-hdb “Sacrifices?” (2)

• Back-bdb DN2ID subtree IDL speeds
subtree searching?
– Only for small trees. Beyond the fixed IDL

size, the subtree IDL does more harm than
good, bringing in false candidates

• Back-hdb subtree recursion is expensive?
– Never brings in false candidates – makes search

evaluation more efficient

Test Results

• Back-hdb & back-bdb search performance tests
out to nearly identical, with a 2% advantage to
back-hdb. Entry caching has leveled the field here,
but back-hdb’s smaller footprint still gives it an
edge.

• Back-hdb Add/Delete performance relative to
back-bdb depends on database size; even on small
DBs 10% gains are noticeable. Overshadowed by
attribute indexing.

Conclusions

• Back-hdb is faster for both reads and writes,
even without entry caching.

• Minus attribute indexing, back-hdb
performs DIT updates in constant time –
disproving the myth that LDAP must be
slow for writes.

• This is the most viable approach for really
large scaling.

