
OpenLDAP Developer’s Day, Aug 2004

© 2004 IBM Corporation

Adaptive Cache Tuning
in OpenLDAP

Jong-Hyuk Choi (jongchoi@us.ibm.com)
IBM Thomas J. Watson Research Center
Enterprise Linux Group

OpenLDAP Developer’s Day, 2004

Contents

 Application-Level Memory Management

 Entry Cache vs. DB Mpool

 Adaptive Cache Tuning
– Memory Pressure Resilient Entry Cache

– DB Mpool Resizing Mechanism

 Summary

OpenLDAP Developer’s Day, 2004

Memory Management
 Virtual Memory Abstraction

– Provides an abstract view of memory

– Illusion of large address space regardless of physical memory size

– Does not abstract performance though !

 64-bit Platforms
– Increasing demand of application memory

– Physical memory size does not scale accordingly

– Increasing Vitual / Physical ratio

 Server Consolidation
– Over-commit of system memory resource

– Another level of virtual memory abstraction between OS and VM

– IBM zSeries zVM, IBM pSeries DLPAR / pHypervisor, VMWare …

OpenLDAP Developer’s Day, 2004

Application-Level Memory Management

 Collaborative Memory Management
– Collaboration between system layers are essential

• Applications – Operating System
– When it is more efficient to construct an object than to rely on lower

layer paging mechanism, discard in-memory object
• Operating systems – Virtual Machine

– Ballooning driver : relying on OS paging mechanism to collect
memory and redistribute to other OS images

– DLPAR : dynamic resizing of memory resources between LPARs
• A rule of thumb: it’s better for a higher layer to collaborate with

the memory management at a lower layer, because the higher
the layer is, the more domain-specific information is available

OpenLDAP Developer’s Day, 2004

Caches in OpenLDAP

nrdn
parent
Status,ID
LRU
Entry
kids-avl

nrdn
parent
Status,ID
LRU
Entry
kids-avl

nrdn
parent
Status,ID
LRU
Entry
kids-avl

nrdn
parent
Status,ID
LRU
Entry
kids-avl

ID
name
nname
e_attrs
oc_flags
bv

 Entry Cache

dn ndn cn sn ou loc …

 DBT

ID1, ID2, ID3, ID4 ……
 IDL

Cache

 EntryInfo
Cache

OpenLDAP Developer’s Day, 2004

BerkeleyDB Caching
 Berkeley DB mpool subsystem

– General purpose shared memory buffer pool

– B+Tree, Hash, Recno

– File mapped / shared memory backed

– Size is determined upon DB_ENV creation

db file
region

file
db file

db file

mpool

mpool region
file

OpenLDAP Developer’s Day, 2004

Entry Cache vs. BerkeleyDB Mpool

 Entry cache
– Provides low latency access method for small working set sizes
– Low hit latency
– Poor performance under memory pressure – swapping havoc

• Entry load from DB : write access -> dirty pages -> needs write back
 DB mpool

– Provides caching for large working sets
– Higher hit latency than the entry cache (10 ~ 1000 times)

• Access method overhead
• Data copying from DB mpool to application buffer

– Good performance under memory pressure
• Entry load from region: read access -> clean pages -> no write back

OpenLDAP Developer’s Day, 2004

Entry Cache vs. BerkeleyDB Mpool: Swapping
 Sequential access, cold run

 Working set > available physical memory size

DB Mpool Entry Cache

Paging

Read-ahead

 Swapping storm can occur even with a balanced initial configuration
– Hikes in memory demand due to other applications and/or other OSes

OpenLDAP Developer’s Day, 2004

Entry Cache vs. BerkeleyDB Mpool: Latency
 Non-sequential access, cold run + warm run

 Working set < available physical memory size

DB Mpool Entry Cache

Cache Hit

Cache Hit

 Access method overhead / data copying in DB Mpool
– Latency increase - Degrades system perf (throughput, cache pollution)

OpenLDAP Developer’s Day, 2004

Entry Cache vs. Berkeley DB Mpool

 How can we utilize both the advantages ?
– Entry cache redesign to make it resilient to memory pressure

– DB cache resizing mechanism

OpenLDAP Developer’s Day, 2004

Entry Cache Redesign: Detecting Memory Pressure

 Limit entry cache size upon detecting
memory pressure

– OS memory info does not tell the whole
story in virtualized environment

– Monitoring average access latency
– Sudden incline of average latency curve

 Huge decrease in swapping storm
 Cannot recover completely from swapping

storm, because
1. OpenLDAP caches are malloc’d
2. Different OpenLDAP cache objects are

collocated and interfere (EntryInfo / Entry)
– EntryInfo cache has poor locality (AVL tree),

hence it makes OS paging algorithm
ineffective

Swapping
Detected

OpenLDAP Developer’s Day, 2004

Entry Cache Redesign: Dedicated Object Heaps
 Dedicated object heap

– Breaks interference bw objects
 Mmap-based entry cache

– Allocation / replacement unit: cluster of pages
– Mapping from /dev/zero

 Entry cache
– Use mmap-based entry cache
– Entry struct size depends on schema

 DBT struct
– Use mmap-based DBT (DBT_USERMEM)
– Size depends on stored data (small variance)

 EntryInfo
– Small size, always in addr space, use malloc

 Much enhanced swapping behavior
 Fragmentation problem

– Provides slabs for Entry and DBT struct
– Simple buddy allocator
– Find cluster size to minimize fragmentation

according to the average size of DBT struct
– Invalidate highly underutilized clusters

Swapping
Detected

OpenLDAP Developer’s Day, 2004

Entry Cache Redesign: Avoid Swapping

Swapping
Detected

 Dedicated object heap
+ memory use hint to OS
– madvise(MADV_DONTNEED)
– Zaps the pages in the mapping wo writeback
– Mapping is still active and COW zero pages will

be provided when accessed again

 When memory pressure is detected
– Call madvise to release memory wo writeback

 How to detect an app object is gone ?
– Testing non-zero byte in object (Entry, DBT)
– Compare epoch numbers in EntryInfo and the

page cluster

 Entry cache resizing becomes very efficient

OpenLDAP Developer’s Day, 2004

Resizing BerkeleyDB Mpool
 BerkeleyDB Mpool can be resized when it’s dedicated to a single slapd

– Completing outstanding DB operations
– Removing the DB environment by DB_ENV->remove()
– Recreating the DB environment with a new cache size

 The environment resizing overhead turned out to be very small with an
appropriate checkpoint setting
– Consider resizing when system is under low load condition

 During DB environment restart
– Queues incoming requests temporarily
– Requests can be serviced out of OpenLDAP caches
– Return BUSY

 DB Mpool resizing policy
– Increase upon large update latency, Decrease upon small update latency
– When DB Mpool is resized, resize the Entry cache in the opposite direction

OpenLDAP Developer’s Day, 2004

Summary and Further Works

 Adaptive cache tuning
– Taking advantage of both the entry cache and DB mpool

 Memory pressure resilient entry cache
– Use of mmap based memory allocator and memory access hint
– Entry cache resizing becomes very efficient

 Resizing DB mpool
– DB mpool can be resized by monitoring the latency of updates

 Further works
– A patch for community review
– Monitoring of cache hit ratio

