Open Directory & OpenLDAP

David M. O’Rourke
Engineering Manager
Overview

• Background on Apple’s Open Directory Technology (8 minutes)
 – What is it
 – What is Directory Services
• How has Apple integrated OpenLDAP (20 minutes or less)
 – what has Apple added to OpenLDAP?
• Questions and Answers (remaining time)
Open Directory

- Open Directory is a technology name
 - Covers both client access technologies and server technologies
 - Integrates and promotes industry standard technologies
- Open Directory is built into Mac OS X & Mac OS X Server
 - Been there since 10.0
- Open Sourced as part of Darwin
What Is Directory Services

- Abstraction API for read/write access to system configuration and management data
 - Users, groups, mount records and others
 - Authentication abstraction
Directory Services in 10.3

• Includes
 – LDAPv3 (read/write), Native Active Directory, NetInfo, NIS, BSD/etc files
 – Service Discovery: Rendezvous, SMB, AppleTalk, and SLP
 – LDAPv3 client support replication fail over

• Documented Access API and plug-in API
 – SDK posted
 – Sample code, sample plug-in, notes
 – Directory Services Headers are installed in
 – /System/Library/Frameworks/DirectoryService.framework
 – Command line tool for directory editing ‘dscl’
10.3 Usage of Directory Services

- Login Window uses Directory Services for all user authentication
 - Managed Desktop
- All Security Framework authentication uses Directory Services
- Legacy Unix tools have been migrated to use PAM
 - Mac OS X default PAM module uses Directory Services
- Mac OS X Server processes and Administration Tools
How Does Mac OS X Use Directory Services?

- BSD/Command Line/Server
 - BSD APIs
 - lookupd
- Mac OS X Application
 - Directory Service Framework
 - DirectoryService
 - Plug-in(s)

Directory Data
Mac OS 10.3 Directory Server

- Mac OS 10.3 Server includes a complete Directory and Single Sign-on Authentication system
 - LDAPv3—based on OpenLDAP 2.1.22
 - Enhanced the Open Directory Password Server
 - SASL based network authentication
 - Added a fully integrated Kerberos Server
 - Support Windows Clients via integrated PDC
- Replication support for LDAP and Authentication data
- Apple is pursuing Kerberos as a unifying Single Sign-on Technology
 - Mac OS X Server all deploy Kerberos (customers don’t even know it some cases)
Apple’s Password Server

- Allows customers to support all major LAN network protocols and required authentication methods
 - Apple has invested in a secure password database
 - Supports secure replication
 - Can sync passwords with an MIT KDC
 - Enforces password policies
 - Allows customers to support both Kerberos and non-Kerberos based network protocols and applications
 - Users have a single password across all network services/platforms
- Future plans call for us to work with MIT to extend Kerberos for non-password based authentication
Password Server Authentication Methods Supported by Mac OS X

<table>
<thead>
<tr>
<th>Authentication Method</th>
<th>Jaguar</th>
<th>Panther</th>
<th>Tiger</th>
<th>Protocol Client</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5 Digest</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>Default, Login Window, Clear Text</td>
</tr>
<tr>
<td>CRAM-MD5</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>IMAP & SMTP</td>
</tr>
<tr>
<td>NT-Lan Manager</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>SMB File Sharing</td>
</tr>
<tr>
<td>APOP</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>POP3 Mail Protocol</td>
</tr>
<tr>
<td>WebDAV Digest</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>WebDAV File System</td>
</tr>
<tr>
<td>MS Chap2</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>PPP, PPTP, VPN</td>
</tr>
<tr>
<td>2 Way Random</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>AFP</td>
</tr>
<tr>
<td>DHX (Diffe-Helman Exchange)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>AFP, and Mac OS X Setpassword</td>
</tr>
<tr>
<td>NTLMv2</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>SMB File Sharing</td>
</tr>
</tbody>
</table>
LDAPv3 Client Features

- 10.3 LDAPv3 is a robust LDAPv3 client
 - Support for DHCP LDAP server discovery
 - Server-based or client side LDAP mappings
 - Integrated support for Open Directory Password Server
 - Client side awareness of LDAP replicas
 - API transparent failover when necessary
 - read/write replication support
 - Auto-discovery and configuration for Kerberos usage
OpenLDAP, Mac OS X Server and OpenDirectory

Jason Townsend
Directory Services Engineer
mailto:jtownsend@apple.com
Apple and OpenLDAP

- LDAP is Apple's network directory system of choice
- Must be trivial for our customers to deploy
- OpenLDAP is used for both client and server side LDAP support since Mac OS X 10.2
- Apple is investing in OpenLDAP feature set—we are adding support for:
 - Directory based schema and access controls
 - Changes will be presented to OpenLDAP project
 - Changes will also be posted on Darwin
- Mac OS X Server will also expose support for LDAP organization units (ou’s) in the GUI tools
No secrets!

- All Apple modifications have been and will continue to be presented to OpenLDAP project
- Regardless of acceptance our changes are posted to Apple’s darwin OpenSource repository
- Darwin is the OpenSource project that Mac OS X is based on.
Apple modifications summary

• Resolve any build issues on Mac OS X
• Full integration with the Apple Password Server
 – pass through of authentication data
• In directory schema and access controls
• slapconfig command line tool to automate standard setup process
 – GUI tools use slapconfig underneath
• configuration data stored in LDAP
• additional Apple schema
 – /Library/configuration/blah
• client side failover support in Directory Services LDAPv3 plug-in
Build support on Mac OS X

- symbol conflicts (sl_free)
- BIND 9 changes
- SASL header include
- Xcode project in OpenLDAP sources (for debugging)
 - autoconf/makefiles still used to generate shipping binaries
Integration with Password Server

- Password Server does not provide network access to either cleartext or hashes of the password
- The challenge is generated before the user is known
- To support secure authentication, challenge and response are relayed to Password Server for verification
 - accomplished using a custom SASL plug-in
- Cleartext authentication is proxied to a secure auth to Password Server
In-Directory Schema

• Storing schema directives in the directory
• Helpful for replicated environments
 – don’t need to manually replicate .schema file changes
 – helps also in the case of remote-only administration
• schemaconfigdn directive indicates DN of schema record
 – attributetype directives become attributeTypesConfig values of this record
 – objectclass directives become objectClassesConfig values of this record
• modified files: servers/slapd/add.c, at.c, config.c, main.c, modify.c, oc.c, proto-slap.h, schema.c, schema_init.c, schema_prep.c, schemaparse.c, slap.h
In-Directory Schema Example

slapd.conf:
schemaconfigdn "cn=schema,cn=config,dc=example,dc=com"

LDIF:
dn: cn=schema,cn=config,dc=apple,dc=com
cn: schema
objectClass: top
objectClass: container
objectClass: extensibleObject
attributeTypesConfig: (2.16.840.1.113730.3.1.13 NAME 'mailLocalAddress'
 DESC 'RFC822 email address of this recipient' EQUALITY caseIgnoreIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{256})
attributeTypesConfig: (2.16.840.1.113730.3.1.18 NAME 'mailHost' DESC
 'FQDN of the SMTP/MTA of this recipient' EQUALITY caseIgnoreIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{256} SINGLE-VALUE)
attributeTypesConfig: (2.16.840.1.113730.3.1.47 NAME 'mailRoutingAddress'
 DESC 'RFC822 routing address of this recipient' EQUALITY caseIgnoreIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{256} SINGLE-VALUE)
objectClassesConfig: (2.16.840.1.113730.3.2.147 NAME
 'inetLocalMailRecipient' DESC 'Internet local mail recipient' SUP top
 AUXILIARY MAY (mailLocalAddress $ mailHost $ mailRoutingAddress))
In-Directory Access Controls

• DN of access control record specified by access specified-in-directory directive

• attribute values include sequence number and access directive
 – 1000: access to * by * read

• Useful when using read access controls in a replicated environment

• modified files: servers/slapd/acl.c, aclparse.c, add.c, backend.c, config.c delete.c, main.c, modify.c, proto-slap.h, schema_prep.c, slap.h
In-Directory Access Controls Example

slapd.conf:
access specified-in-directory apple-acl
“cn=default,cn=accesscontrols,dc=example,dc=com”

LDIF:
dn: cn=default,cn=accesscontrols,dc=example,dc=com
cn: default
objectClass: apple-acl
objectClass: top
apple-acl-entry: 1000:access to attr=userPassword by self write by
 group/posixGroup/memberUid=”cn=admin,cn=groups,dc=example,dc=com” write
 by * read
apple-acl-entry: 1100:access to * by
 group/posixGroup/memberUid=”cn=admin,cn=groups,dc=example,dc=com” write
 by * read
slapconfig command line tool

• Manages the Open Directory server (including slapd and slurpd)
• Enables KDC when creating an Open Directory master
• Provides single commands for:
 – creating an Open Directory master
 – adding a replica
 – removing a replica
• Server Admin uses slapconfig as well so all GUI functionality is available thorough the command line
• Log file is /Library/Logs/slapconfig.log
Example slapconfig commands

% slapconfig -createldapmaster <admin name>
Password:

% slapconfig -createreplica <master IP address>
<admin name>
Password:

% slapconfig -destroyldapserver
Other Configuration Data in LDAP

- OpenDirectory LDAP Server mappings
 - stored as an organizationalUnit record named macosxodconfig
 - description has XML plist for Directory Services LDAPv3 plug-in
 - needed for DHCP provided LDAP server (option 95)
Example Server Mappings Record

dn: ou=macosxodconfig,cn=config,dc=apple,dc=com
ou: macosxodconfig
objectClass: top
objectClass: organizationalUnit
description:: PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPCFET0NUWVF
IHBsaXN0IFBVQkxJQyAiLS8vQXBwbGVgQ29tcHV0ZSIvL0VORE5pZCBMRSBTVCBvcmUgQ29iamRu
...
N0cmIuZz50b3duc2VuZDk8L3N0cmIuZz4KPC9kaWN0Pgo8L3BsaXN0Pgo=
description is an XML plist:
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Attribute Type Map</key>
 <array>
 ...
 </array>
 </dict>
</plist>
Other Configuration Data in LDAP

- Replica lists to support client side failover
 - LDAP is in ldapreplicas config record
 - passwordserver config record
 - KerberosClient record
Other Configuration Data in LDAP

- KerberosClient record also used to automatically populate client’s Kerberos config file
- KerberosKDC record contains contents of kdc.conf
 – used when adding a new replica
- Also have a method for storing key-tab information securely in LDAP (requires password server)
 – allows for delegated Server administration - File server administrator doesn’t have to be a Directory administrator to add a new Kerberos service
KerberosClient Record

```xml
<plist version="1.0">
  <dict>
    <key>edu.mit.kerberos</key>
    <dict>
      <key>domain_realm</key>
      <dict>
        <key>.apple.com</key>
        <string>ODDJOB.APPLE.COM</string>
        <key>apple.com</key>
        <string>ODDJOB.APPLE.COM</string>
      </dict>
      <key>libdefaults</key>
      <dict>
        <key>default_realm</key>
        <string>ODDJOB.APPLE.COM</string>
      </dict>
      <key>realms</key>
      <dict>
        <key>ODDJOB.APPLE.COM</key>
        <dict>
          <key>KADM_List</key>
          <array>
            <string>oddjob.apple.com</string>
          </array>
        </dict>
        <key>KDC_List</key>
        <array>
          <string>oddjob.apple.com</string>
        </array>
      </dict>
    </dict>
    <key>generationID</key>
    <integer>1143721936</integer>
  </dict>
</plist>
```
Kerberos KDC Record

```
[kdcdefaults]
kdc_ports = 88

[realms]
ODDJOB.APPL.EL.COM = {
    kadmint_port = 749
    max_life = 10h 0m 0s
    max_renewable_life = 7d 0h 0m 0s
    master_key_type = des3-hmac-sha1
    supported_enctypes = des3-hmac-sha1:normal
    arcfour-hmac-md5:normal des-cbc-crc:normal des-cbc-crc:v4
    kdc_supported_enctypes = des3-hmac-sha1:normal
    arcfour-hmac-md5:normal des-cbc-crc:normal des-cbc-crc:v4
    acl_file = /var/db/krb5kdc/kadm5.acl
    admin_keytab = /var/db/krb5kdc/kadm5.keytab
    database_name = /var/db/krb5kdc/principal
}

[logging]
kdc = FILE:/var/log/krb5kdc/kdc.log
admin_server = FILE:/var/log/krb5kdc/kadmin.log
```
Additional Apple schema

• Stored in /etc/openldap/schema/apple.schema
• Used to support Mac OS X/Mac OS X Server features
 – Managed desktop
 – AFP home directories
• OID prefix: 1.3.6.1.4.1.63
Future Ideas for OpenLDAP

What Apple thinks we need

• improved handling of upgrade scenarios
 – dump to LDIF and reimport can be expensive on large databases

• incremental indexing - better performance for adding to large databases

• unification with authentication services (Password Server/SASL and Kerberos)
 – three databases currently which must be kept in sync
Q&A
Optional material follows
Kerberos Auth Authority

- Used by loginwindow to determine if the user is Kerberized
- ;Kerberosv5;[guid];[principal];realm;[realm key]
- Minimum
 - ;Kerberosv5;;;FOO.APPLE.COM;
 - Principal name will be user_shortname@FOO.APPLE.COM
- Recommended
 - Kerberosv5;;user@FOO.APPLE.COM;FOO.APPLE.COM;
 - May want to add the principal name as an additional shortname for the user